Module contractibility for semigroup algebras
author
Abstract:
In this paper, we nd the relationships between module contractibility of aBanach algebra and its ideals. We also prove that module contractibility ofa Banach algebra is equivalent to module contractibility of its module uniti-zation. Finally, we show that when a maximal group homomorphic image ofan inverse semigroup S with the set of idempotents E is nite, the moduleprojective tensor product l1(S)×l1(E)l1(S) is l1(E)-module contractible.
similar resources
module contractibility for semigroup algebras
in this paper, we nd the relationships between module contractibility of abanach algebra and its ideals. we also prove that module contractibility ofa banach algebra is equivalent to module contractibility of its module uniti-zation. finally, we show that when a maximal group homomorphic image ofan inverse semigroup s with the set of idempotents e is nite, the moduleprojective tensor product ...
full textModule Amenability for Semigroup Algebras
We extend the concept of amenability of a Banach algebra A to the case that there is an extra A -module structure on A, and show that when S is an inverse semigroup with subsemigroup E of idempotents, then A = l(S) as a Banach module over A= l(E) is module amenable iff S is amenable. When S is a discrete group, l(E) = C and this is just the celebrated Johnson’s theorem.
full text2n-Weak module amenability of semigroup algebras
Let $S$ be an inverse semigroup with the set of idempotents $E$. We prove that the semigroup algebra $ell^{1}(S)$ is always $2n$-weakly module amenable as an $ell^{1}(E)$-module, for any $nin mathbb{N}$, where $E$ acts on $S$ trivially from the left and by multiplication from the right. Our proof is based on a common fixed point property for semigroups.
full textModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
full textmodule cohomology group of inverse semigroup algebras
let $s$ be an inverse semigroup and let $e$ be its subsemigroup of idempotents. in this paper we define the $n$-th module cohomology group of banach algebras and show that the first module cohomology group $hh^1_{ell^1(e)}(ell^1(s),ell^1(s)^{(n)})$ is zero, for every odd $ninmathbb{n}$. next, for a clifford semigroup $s$ we show that $hh^2_{ell^1(e)}(ell^1(s),ell^1(s)^{(n)})$ is a banach space,...
full textDifferential Algebras on Semigroup Algebras
This paper studies algebras of operators associated to a semigroup algebra. The ring of differential operators is shown to be anti-isomorphic to the symmetry algebra and both are described explicitly in terms of the semigroup. As an application, we produce a criterion to determine the equivalence of A-hypergeometric systems. Conditions under which associated algebras are finitely generated are ...
full textMy Resources
Journal title
volume 7 issue 2
pages 5- 18
publication date 2011-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023